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Abstract—A new analytical procedure called interzone temperature profile estimation (ITPE) is presented

and applied to determine the two-dimensional steady-state temperature distribution within earth around

a building. The solutions of the governing heat conduction equations are derived for two common

ground-coupling geometries : slab-on-grade floors and rectangular basements. A water table at constant

temperature is assumed to exist at a given depth below the soil surface. The solutions presented are the

first analytic solutions for these geometries capable of considering the effects of both insulation and the
presence of a water table on heat flow from these geometries.

1. INTRODUCTION

WHEN A steady-state heat conduction problem is too
complicated to be solved by analytical techniques,
graphical means, electrical analogies or numerical
techniques are normally utilized. However, in most
cases numerical techniques such as finite differencing
provide numerical answers to a specific problem with-
out much physical insight.

This paper presents a new procedure for solving a
class of complicated heat conduction problems. This
procedure combines numerical and analytical tech-
niques to arrive at the functional form of heat con-
duction solutions that otherwise cannot be obtained
by solely applying the classical analytical methods.
The new procedure, called interzone temperature pro-
file estimation (ITPE), allows an understanding of the
heat flux mechanism within and at the boundaries of
a conducting medium.

When first introduced in ref. [1], the ITPE technique
used an approximate estimation of the temperature
profiles along surfaces that divide the conducting
medium into zones where the heat conduction equa-
tion can be easily solved. Two applications of the
ITPE technique to ground-coupled heat transfer were
treated, the insulated slab-on-grade problem in ref.
[2] and the insulated full-rectangular-basement prob-
lem in ref. [3]. In this paper, the ITPE technique is
improved by introducing a method that leads to a
very good estimation of the temperature profiles, and
consequently to more accurate solutions of the heat
conduction equation.

The idea of the ITPE technique consists of assuming
that the temperature variation along adequate sur-
faces inside the ground (or any other medium) is
known. These surfaces are those imposed by either of
the following cases.

(1) Geometric configuration, such as a rectangular
basement shape.

(2) Boundary condition, such as an insulated slab-
on-grade floor adjacent to a soil surface kept at a
constant temperature.

Instead of the approximate exponential form for
the temperature profile expressions used in the pre-
liminary work [2, 3] an ‘exact’ form is determined by
imposing heat flux continuity along the surface where
one of the two cases cited above occurs. As will be
shown later in this paper, these ‘exact’ forms are, in
most cases, obtained through the use of the Gauss—
Jordan elimination method.

Due to the mathematical complexity, analytical
solutions for basement configurations are extremely
limited. Shelton [4] determined the steady-state heat
loss from a hemisphere embedded in the ground.
Boileau and Latta [5] developed a steady-state solu-
tion for basements based on the assumption that heat
flows follow circular arcs. Their solution is the
basis for the method which has been provided in the
ASHRAE Handbook [6] for over a decade for cal-
culating maximum losses at design conditions. Other
analytical solutions are those developed by Shen and
Ramsey [7] and Claesson and Eftring [8]. Shen and
Ramsey [7] used the least square Fourier series
method to estimate heat losses from insulated under-
ground buildings, but they did not account for water
table effects. Claesson and Eftring [8] computed the
steady-state optimal thermal insulation distribution
for several underground configurations. However, the
heat losses for insulation other than optimal are not
given. Most of the analytical solutions and design
methods for basement and slab-on-grade heat loss are
reviewed in ref. [9].

This paper analyzes the two most common ground-
coupled structures: slabs and basements. The prime
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a half width of ground-coupled building
{m]

A,, B,, C, general term in a Fourier series
¢xpansion

b water table depth [m]

c basement depth [m]

f.g  functions of one of the space coordinates
K]

fw gn Fourier coefficients

H ratio, h/k, [m~']

h overall heat transfer conductance
Wm?K™']

k inside surface convective heat transfer
coefficient [Wm™?K ]

h, outside surface convective heat transfer
coefficient [Wm™2K~']

k, soil thermal conductivity [Wm™' K~']

L distance from building center to a

boundary where soil temperature is
undisturbed [m]

T temperature [K]

T; building air temperature [K]

NOMENCLATURE

Ty water table temperature [K}
T, slab temperature [K]
T, soil surface temperature [K}

AT, dimensionless temperature
U, envelope material conductance
Wm™?K™"]
U insulation conductance [Wm2K~'].
Greek symbols
o, B,y coefficients defined in equations (6)
and (16)
o, B,y coefficients defined in equation (18)

Ls Yons Vu» t  €igenvalues fm~'].

Subscripts
f floor
wi walls
1 zone (I}

In zone (II)
I zone (IIT).

objective of this study is to determine the effects of
thermal insulation and the water table on the steady-
state soil temperature distribution. Note that this
analysis can be used to determine the yearly average
heat losses from basements and slabs.

The second section discusses the two-dimensional
steady-state heat conduction solution underneath a
slab-on-grade floor. The special case of a non-insulated
slab is analyzed in some detail. The effect of the depth
and the temperature of a water table below the slab
floor is determined and conclusions are drawn.

The temperature distribution around an insulated
rectangular basement is the subject of the third
section. While the insulation along the walls and the
floor is assumed uniform, the insulation of the walls
can be different from the insulation of the floor. The
effect of a water table, at some depth below the base-
ment floor, is also shown,

2. INSULATED SLAB-ON-GRADE FLOOR

2.1. General solution

Even when a slab floor is not insulated, the tem-
perature along its width is not constant. A thermal
resistance exists between room air and the slab
surface. To account for this resistance, an interface
conductance / is usually introduced and a third-kind
boundary condition is used. This boundary condition
expresses the continuity of the heat flux between the
lower slab surface and the interior air (at 7}) via
(1) the convective conductance A, to the ambient air

above the slab, (2) the insulation conductance U, (3)
the slab material conductance U, and (4) the interface
contact conductance A;,. Therefore, the boundary con-
dition at the slab surface can be written as

or

ko
ay y=0

= MT{x,0)-T]
where h is the equivalent air—insulation-slab—soil con-
ductance, given by

h=(h '+ U U +h7 D7 M

and k, the thermal conductivity of the soil (assumed
isotropic), while T; is the air temperature above the
slab (i.¢. the building interior temperature).
Consequently, the steady-state temperature dis-
tribution T{x,y) inside the ground for an insulated
slab-on-grade floor configuration as shown in Fig. 1
can be determined by solving the following equation :

*T  o°T
a0 @
with
Tr=T, fory=»5
T=T, fory=0and|x| >a
aT
-6—);=H(T~T,) fory=0and|x| <a

where H is the ratio of the equivalent air-insulation—
slab-soil conductance to the soil thermal conductivity
(i.e. H = hjk,).

The equation above cannot be solved by formal
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Fi1G. 1. Slab-on-grade floor configuration with finite water table level.

techniques such as the Schwarz—Christoffel trans-
formation used in ref. [10]. However, the ITPE
approach can be used. Figure 1 shows that the
surfaces, x = —a and g divide the ground medium
into three zones.

Because of the symmetry around the axis x = 0, the
temperature T(x, y) will be determined only in zones
(I) and (II). Let f(») be the temperature profile along
the surface x = —a; then the solution of equation (2)
in zone (I) is

sinv,y

Ti(x,y) = Z

x{IT1— (= 1)"Tw][1 —en ) 1y, f e} (3)

while in zone (II), the temperature Ty(x,y) is given
by

22 coshv,x

Tu(x,J’)=Z 2 f,,San,, coshv.a

n=1 n

2 (=1 sinh u,y

. o n

a ” ngl Hn cos fo Sinh ﬂnb

23 Sinh 1, (6—y)

z — 1) el A\ L4

~al (CDrGeospx =L @)
where

nn 4 . 2n— 1=
=g Ja =f JSW)sinv,pdy; p, =(—2—)~
0 a
and
. 22
HT;/p,+ T, /sinh p,b + & Y SonbtaVo [ (2 +V2)
C,, — m=1

(H+ u, coth u,b)

The continuity of the heat flux at the surface

x = —a, gives the condition
aT; 0Ty
0X |xo—a  0X |xo—a ©)

or

nMs

2 n

sm vy {va fu— [T

= —T Z tanhv,a f, sinv,y

o

2 * sinhy, y g 5 sinh p,(b—y)

=T, - ;
+a ¥ Sosinhp,d a2 sinh p1,b

The Fourier coefficients f, are obtained through use
of the Fourier inverse integrals by multiplying the
above equality by sinv,y (p=1,2,...), and inte-
grating the resultant equation over [0, ] which yields

v o= [T1—(=1)’T,] =—v,f, tanh v,a

Hy
—(—1)T, tanh C,—— e
(-1 anh v,a+ n; it

After rearrangement, this expression can be put in the
form

fo=0+ Y Bupfm (6)
m=1
where

1

[ —_f — 1 V4
% v,(1+tanh v,a) {[T' (=T
—(—1)’T, tanh v,a

2 (HTtp,T.jsink pb)y, }
a /= (H+ p, coth u,b) (7 +v7)

+

and

4v,,

Pmo = 2b(1 Ftank v,a)

He
x Z  (H+p, coth p,b) (2 +v2) (12 +v2)’

In the general case (i.e. H # o), the system of equa-
tion (6) can be solved for the f,’s only numerically.
To do so the sum in equation (6) is first truncated to
a finite number of terms, N. By varying the value of
p from 1 to N in equation (6), a linear system of
N equations with N unknowns (the coefficients £,
p=1,2,...,N)isobtained. This system can be solved
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using the Gauss—Jordan elimination method. Once
the coefficients f, are found, they are substituted in
equations (3) and (4) (in which the sums are also
truncated to N terms) to obtain the temperature dis-
tributions Ti(x, y) and Ty (x,y), respectively. For the
case of the slab-on-grade problem, it was found that
N = 15 gives accurate estimations. Addition of other
terms does not alter the results for T; and Ty sig-
nificantly (less than 0.01°C variation in soil tem-
perature, for the cases treated in this paper).

Before proceeding further with the insulated slab-
on-grade floor results, let us consider the limiting case
of the non-insulated slab and perfect soil-slab contact
(i.e. H= ).

2.2. Prescribed slab-on-grade floor temperature

When the slab is kept at a constant temperature T;
the temperature distribution inside the ground can be
obtained from the above analysis by letting H — 0.
In particular, the Fourier coefficients f, can be deter-
mined in closed form, since B,,, = 0 for all the values
of m. It is found that

T,+Tytanhv,a (—1)

S G SV 7
? v,(1+tanhv,a) v, T M

Note the change in notation from 7, to T,. This is
done on purpose to stress the fact that for a perfectly
uninsulated floor, the slab temperature is uniform and
equal to T; = T,. For an insulated floor, T, does not
represent the temperature of the slab surface.

The substitution of f, by its value and H by o0, in
equations (3) and (4) gives the temperatures in zones
(I) and (11), respectively, as

y
Tl(x’y) = Tl _z(TI _Tw)

+ 1 tan-! et 9% 5in wy/b
n 1 —e™*+9% cos /b
€™~ sinny/b
a— ~1! —_— . ——
tan [1 — ™% cogmy/b (To—-T) @)

and

It
Tu(x,3) = To =3 (To=T.)
1 | e TP sinmy/b
T {tan [ﬁm/—b
e~ ™ sinmy/b
— 7 —T,).
tan I:l —e M= cosmy/b (Ti=To). )
Representative isotherms are shown for two cases
in Fig. 2. In both cases, the half slab width a is equal
to 3 m, while the water table depth is b = 5 m. Figure
3 shows the temperature variation with depth y along
vertical surfaces.

A close look at Fig. 2 reveals that, in each of the
two configurations, the isotherm 7" = 22°C meets per-
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pendicularly, one of the three bounding surfaces : the
slab, the soil surface, or the water table (i.e. the surface
that is kept at the temperature T = 22°C, which is the
medium of the three temperatures T,, T, and T,).
The meeting point is what was called in ref. [10] the
double point. The fact that, at this point, an isotherm
is perpendicular to the bounding surface indicates that
there is no heat flux at this location of the surface. In
addition, the slab-on-grade floor configuration pre-
sents an axial symmetry around x = 0. Because of this
symmetry it can be concluded from Fig. 2 that in most
cases the surface which is kept at the medium of the
three boundary surface temperatures T, (i.e.
Twa =med(T,, T\,T,)), has two double points.
These two double points are symmetric to each other
relative to the axis x = 0. Moreover, the two sym-
metric isotherms T = T4 divide the ground into two
zones, a warm zone and a cold zone. In the first zone,
the temperature is always above T4, and the heat
flows in one direction : from the surface at the highest
temperature to the surface at T,4. Conversely, in the
second zone, the temperature never exceeds Tpq, and
the heat flow is always from the surface at T4 to the
surface at the lowest temperature.

For example, consider the case of Fig. 2(a), in which
the slab floor is kept at the medium temperature
T.q= T, =22°C. In this case the edge of the slab,
part of the warm zone, gains heat from the soil surface
(at 26°C). Meanwhile the center of the slab, losing
heat to the water table surface (at 18°C), belongs to
the cold zone of the ground.

Figure 4 shows the effect of the depth & on the heat
flux distribution along the slab floor. The deeper the
water table is, the narrower the central zone from
which the slab loses heat. In other words, when b
increases, the double points approach the center of
the slab. This result agrees with Fig. 5 which shows
the variation of the double point location as a function
of water table depth b for different values of AT,
(AT, = (T4~ T,)/(T,—T,), AT, > 0 implies the con-
figuration T, < T, < T)).

2.3. Insulated slab-on-grade floor results

When the slab—soil contact is not thermally perfect
or when the slab is insulated, the temperature along
the floor surface is no longer constant. In fact, the
insulation removes the temperature discontinuity at
the floor edge, making the transition from the indoor
temperature T; to the soil surface temperature 7T, rela-
tively smooth compared to the sudden transition
noted in the case of an uninsulated slab. This tran-
sition becomes less abrupt as the insulation level
increases. This fact is illustrated in Fig. 6; isotherms
beneath a floor of half width ¢ = 3 m, and above a
water table of depth » =5 m are shown. Different
insulation configurations are presented.

The configuration of Fig. 6(c) (H=0.2 m™') is
particularly interesting. In this case all the isotherms
are parallel to the soil surface, indicating a linear
variation of the earth temperature with depth. This
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b=3m

W/ m

20

Heat flux,

b=75m

Distance

from the center, m

Fi1G. 4. Effect of water table depth on heat flux distribution along an uninsulated slab-on-grade floor.

particular result is general in a configuration where
T,< T,<T, In fact, the temperature inside the
ground depends linearly on the depth y, when the
parameter H is equal to a special value H, given by

H, = —%(1+AT0). (10)
Note that AT, = (T,—T,)/(T,~T,) < —1, in this
case. The condition of equation (10) implies that the
temperature along the slab surface is uniform and
equal to the soil surface temperature 7. In the con-
figuration of Fig. 6(c), AT, = —2, giving a value of
H,=0.2 m~". In this case also note that the tem-
perature of the slab is uniform and equal to 7', = 22°C
while the room air temperature is 26°C.

From Fig. 6, one can see that the double point,
which is initially beyond the slab edges, moves
toward the slab edge, as the value of H decreases (e.g.
as the result of an increase in the insulation). When
H = H,, the double point reaches the slab edge and
stays there even after a further decrease in H. Equa-
tion (10) shows that an increase in the water depth b

results in a decrease of the value of H,, indicating that
more insulation is needed to reach the case where heat
is lost uniformly from the floor surface (case of Fig.
6(c)). In the limiting case when b — oo (i.e. no water
table), only perfect insulation leads to a uniform heat
loss (of zero) from the floor.

In the case of Figs. 6(a) and (b), the floor loses heat
to both the soil surface near the floor edges, and to
the water surface from the central area. However, in
the case of Figs. 6(c) and (d) a change in the heat flux
pattern occurs. Here, the floor loses heat only to the
water table.

Figure 7 shows the heat flux distribution along the
floor surface, for the same temperature configuration
of Fig. 6 (i.e. T, = 18°C, T, = 22°C, T; = 26°C). Two
values of H are considered, 3.5 m™! (Fig. 7(a)), and
0.5 m~' (Fig. 7(b)). As one could expect, the heat loss
is approximately constant near the slab center, but
increases rapidly near the edges. In both Figs. 7(a)
and (b) the heat loss at any point of the slab increases
as the water depth b decreases. This increase is more
noticeable at the center of the floor, since at this

I
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location, the heat loss is principally due to the presence
of the water surface, which is at a lower temperature
than the soil surface. Figure 8 gives the heat flux
distribution along the floor surface, for a different
temperature configuration (7, = 18°C, T, = 26°C,
T, = 22°C). It is known in this case that the double
point is located beneath the floor. The intersection
point between the zero heat flux line and the heat flux
distribution curve, marks the double point location.
Both Figs. 8(a) (H=3.5 m™") and (b) (H=0.5
m™"), show clearly that the floor surface is divided
into two zones, one near the edges, gaining heat from
the soil surface, and a second near the center, losing
heat to the water surface. The area of the latter zone
tends to decrease as the water depth increases.

3. INSULATED RECTANGULAR BASEMENT

For the basement problem a model different from
that used previously will be introduced. Above, the
temperature distribution was obtained along an infi-
nite width of the ground (ie. from x = — ¢ to ).
The earth isotherms observed in the slab-edge and the
slab-on-grade floor configurations indicated that the
temperature varies linearly with depth, at locations
far from the slab. For this reason, and especially for
computational convenience, the basement problem is
modelled as shown in Fig. 9. Along the bounding
surfaces x = + L, the temperature is simply assumed
to be a linear function of depth. In these conditions
the temperature distribution T(x, ), around the rec-
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T, (1 -g) for |x| = L

T=0 fory=»5%

where H; = h/k, and H,, = h,/k,; b and h,, are the
values, respectively, of the air-insulation—floor—soil
conductance and of the air-insulation—walls-soil con-
ductance.

Note that in the formulation of equation (11) the
water table temperature 7, was set to zero. This
assumption is not restrictive since, for steady-state
problems, the origin of temperature is arbitrary. A
legitimate choice of this origin is T\,

In order to solve the Laplace equation (i.e. equation
(11)) by the ITPE technique, the ground is divided
into five zones as indicated in Fig. 9. Since the base-
ment configuration has an axial symmetry around
x = 0, the determination of the temperature variation
in zones (I), (II), and (II1) will be sufficient. Fur-
thermore, the temperature profiles at the surfaces

x = —a and y = ¢ are functions of y and x, respec-
tively

T(—a,))=f(»), c<y<b
and

Tx,0)=g(x}, —L<x< —a

Using the separation of variables technique, the
solution in zone (1) is

coshv,x
coshv,a

Ti0) = gy 3 fasinn(y—0)

tangular basement, is the solution of the following 2 {2 A, cos i xsinh w(b—») 12)
equation: a=" " sinh y,(b—c)’
*T  0°T In zone (III), the solution is given by
=0 an b ()
T - R SR X0 —Y)
Wlth ﬂll(xay) - (L__a) n;] 9n SIHXn(x+a) sinh xn(b__c)
orT 2 2 sinhv, (x+L)
% {(T,—T) ory=cand|x] <a + -9 "; fasinv,(y—c) SrhvAL—a)
or 2 © (b—c)/b sinhv,(x+a)
— = =H(T-T) £ d x| = inv,(y—€) ——— .
o ~HoT-T) fory<candlx|=a T L, SO
T=T, fory=0and|x| > a (13)
~-L T -8 o a L
+ X
anp  H) T "
ic
i
(an m
i 1
T, E ib
—
—_— 4

y

FiG. 9. Rectangular basement configuration with finite water table level.
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The expression for the temperature in zone (II)
takes a more complex form

2 2 [(—1y—1] .
=g E et
smh Yn(C— y) 2 & sinh g, v
sinh y,¢ Z X+ Ginh XnC
[I-(=1)"b—0)/b] . sinh {,(x+a)
+1 ,E:l 2 S0CY Snh T, (a~I)
2. sinh {,(x+ L)
+ ;El B,si C"ymsinhc,,(Lwa (14
where
nwo _mm
vn (b‘“‘(,')’ X"—(L““a)
_m. (2n—Dr
gn - ¢ 3 By = 2a
f:3
= j S sinv,(y~c)dy
gn = J‘a g(x)siny,(x+a)dx
L
_ (-DH T/,
* T Hi+p,cothp,(b—c)
+2(_1)n hod fmvmun/(v:l'*-.ur%)
(b— C) ma= | Hf+“n coth I‘n(b_‘
I~ (—)]HL T/,
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The Fourier coefficients f, and g, can be deter-
mined from the required continuity of the heat flux

along the surfaces x = —a and y = c. First, for
x = —a, flux continuity states that
oT, 0Ty
— = 15
ax X=—a ax x=-—a ( )

After a computation procedure similar to that fol-
lowed in the slab-on-grade section, the condition given
by equation (15) leads to

a)]f;: == yp
+ Z S p ot Z Brpdn (16)

vy{tanh v, a-+coth v {

Z Hpy,T;
= [He+ py coth g, (b— )0 +445)

(b ‘“f') T,
bsinhv,(L—a)
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2 AnVp
(L—a) x2+v;
4
a(b 9]

o«

Brp = ~

By =

<3 V.Vl '

JEo [+ o cOth 1, (b— )07 + 3 (V2 +423)

The condition of the heat flux continuity at the
surface y = ¢ is expressed by

0T|  0Tw

O fyee Y |y-e

This condition vields a system of equations of the
form of

ylcoth x,c+coth 4 (b— C)] 9 = Tr
+ Z Ly + Z Bt (18)

)

where

v = —[1=(=1)] + (I —c/b}(—1¥T,

smh K€

=]
Aplb—c)

XeC 1)
2 b
2 = [ —(= 1Y}, Hyn
T X HoFLooth L -l + D)
2 ool = (= 11 —c/B)ljsinh L L—a)
teh <Z (Hor 4 Tcoth Tl — NG+ 1)

(= 1)){coth ({(L—a)) — 1/[{AL— a)]})

X [coth Yb—c)+

~{(~1¥T, (g cothy,c—tanh

ne= | [le +gn coth Cn(L—a)](Cn +Xp)

Ly p = 4
e o(L—a)

- =1Lk
n= I[le_._Cn coth cn(L a)](Cn +X;))(C2+Xm

2 Ymks
c) v +xp

Bro=~ G5

The procedure developed for determining the slab-
on-grade solution can be repeated, with some appro-
priate adjustments. To find the temperature dis-
tribution around a rectangular basement for specific
boundary temperatures, water depth, and insulation
configuration, two steps are needed.

(1) The Fourier coefficients f, and g, are deter-
mined by truncating the sums in equation (16), and
in equation (18) to N terms. By doing so, a system of
2N equations with 2N unknowns (f, fs,..., fy and
g1, 93 --» gn) is obtained. This system can be easily
solved using standard methods {e.g. Gauss-Jordan
elimination). In all basement configurations treated
in this section, N = 20 was needed to reach an accu-
racy of 0.01°C for the soil temperature.
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(2) The temperatures inside zones (I), (II), and
(IIT) are found by substitution of the values of the
Fourier coefficients f, and g, into equations (12)-
(14), respectively.

Figure 10 illustrates the results of these two steps
for a basement of half width @ = 3 m, and a depth
¢ =2 m. The air inside the basement is at a tem-
perature T; = 22°C while the soil surface temperature
T, = 26°C. A water table below the basement floor at
a depth » =4 m, is kept at 7T, = 18°C. Three wall
insulation configurations are treated H,, = o in Fig.
10(a), H,, = 0.5m™'in Fig. 10(b), and H,, = 0in Fig.
10(c). In all these configurations, the basement floor
is assumed to be perfectly uninsulated (i.e. H; = o0).
At the point of connection between the soil surface
and the basement wall, many isotherms meet (Fig.
10(a)). This indicates that, at this point, the heat flux
is relatively large. However, when H,, decreases, the
isotherms separate and the heat flux decreases (Figs.
10(b) and (c)). At the same time, the double point,
initially located near the center of the wall surface,
starts to move to the bottom of the wall. Again, it can
be seen that this double point divides the wall into
two regions. The upper part receives heat from the
soil surface while the lower part loses heat to the water
surface. Therefore, as H,, decreases (by increasing
insulation), the wall benefits more from the soil sur-
face than the water surface from the wall, at least as
far as heat exchange is concerned.

Moreover, and always referring to Fig. 10, it is clear
that when the wall is perfectly insulated (H,, = 0), the
ground temperature becomes a simple linear function
of the depth p. In general, this situation occurs in the
case where —1 < AT, = (T;—T,)(T,—T)) <0 (e.g.
T. < T, < T,), with the conditions : H,, = 0, H; = o,
and

c=b1+ATy) " (19)

In the case of Fig. 10{c), since AT, =1, =4 m, and
¢ = 2 m, the condition of equation (19) is indeed met
and the profile with depth is linear.

Figure 11 shows some ground isotherms around a
rectangular basement, similar to that in Fig. 10, but
with T, = 22°C, T, = 26°C, and T,, = 18°C. The dou-
ble point on the soil surface first moves along the
basement wall toward the basement floor as the wall
insulation increases (i.e. H,, decreases). This means
that the soil surface receives progressively less heat
from the basement wall. However, the area of the
basement wall, from which this heat is lost to the soil
surface, becomes larger. In fact, the dashed line in Fig.
11 marks a limiting heat flow line. Above this line,
heat flows solely towards the soil surface. In the case
of Fig. 11(c), this line coincides with the wall surface,
since heat cannot be lost (perfect wall insulation,
H,, =0).

4. CONCLUSIONS

A semi-analytical procedure has been developed to
solve some complicated heat conduction problems.
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This procedure has been used to carry out a detailed
investigation of heat transfer from the ground to
adjacent buildings with slab floors and basements.
The importance of envelope insulation, water table
temperature and geometric dimensions on the heat
flow mechanism within soil is evaluated. Examination
of soil temperature profiles in the two earth-contact
structures treated in this paper shows that heat near
the center of floors flows mostly in one dimension but
near the walls and the floor it has a definite two-
dimensional nature. Two other important results can
be mentioned.

(1) The double point concept was established when
a water table is present below a building foundation.
The location of the double point on a given surface
marks a change in the heat flow direction. On one side
of the double point, the surface loses heat but on the
other side it gains heat.

(2) Particular insulation values and configurations
exist for which soil temperature is simply a linear
function of depth, indicating that the soil is thermally
undisturbed even though a building is present.
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APPLICATION DE LA TECHNIQUE ITPE A DES PROBLEMES PERMANENTS DE
COUPLAGE AU SOL

Résumé—Une nouvelle procédure appelée Estimation du Profil de Température Interzone (ITPE) est
présentée et appliquée a la détermination de la distribution bidimensionnelle permanente de température
dans le sol autour d’un batiment. Les solutions des équations de convection sont obtenues pour deux
géométries courantes de couplage au sol: étages sur une semelle et fondations rectangulaires. Une nappe
d’eau a température constante est supposée exister 4 une profondeur donnée au dessous de la surface du
sol. Les solutions présentées sont les premiéres, pour ces géométries, qui soient capables de considérer les
effets a la fois de lisolation et de la présence d’une nappe d’eau sur la conduction de chaleur avec des
géométries.

DIE ANWENDUNG DER ITPE-TECHNIK BEI STATIONAREN ERDBODEN-
MODELLEN

Zusammenfassung—Eine neue analytische Vorgehensweise namens ITPE (Interzone Temperature Profile
Estimation) wird vorgestellt und verwendet, um die zwei-dimensionale stationdre Temperaturverteilung
innerhalb des Erdbodens um ein Gebiiude zu bestimmen. Die Wirmeleitungsgleichungen fiir zwei gebrauch-
liche Erdbodengeometrien werden geldst: fiir einen oberflichengleichen Gebiudeboden und fiir einen
rechteckigen Keller. In einer gegebenen Tiefe unterhalb der Erdbodenoberfliche wird die Existenz einer
wasserfiihrenden Schicht von konstanter Temperatur angenommen. Die gezeigten Losungen sind die ersten
analytischen fiir diese Geometrien, die in der Lage sind, die Auswirkungen sowohl der Wirmeddmmung,
als auch das Vorhandensein einer wasserfilhrenden Schicht auf den Wirmestrom bei den genannten
geometrischen Anordnungen zu beriicksichtigen.

UCTIOJIL30BAHHUE METOJA OMNPEAEJIEHHUA MEX30HAJIBHOIO IMPO®WIIA
TEMITEPATYP JU1A PEIIEHHUA CT AL[I/IOHAPHHLIX 3AZIAY TETUIOOBMEHA 3JAHWA C
3EMIJIE

Annoramus—IIpeUToXKeH HOBBI aHANNTHYECKHH METOX MO Ha3BaHHEM “ONpeNEeHHEe MEX3OHANIBLHOIO
npoduns temuepatyp (OMIIT)”, koTOphI# HCMOAL3YETCH U1 HAXOXACHHA JBYMEPHOTO CTAHOHAPHOrO
pacrpeeIeHHA TEMIIEPaTYPHI BHYTPH 3¢MJIHOTO MaccHBa BOKpYT 3aaHns. [Tosryuensl peienns ypasHe-
HHil TEILIONPOBOAHOCTH [UIA [BYX IIMPOKO PAacHpOCTPAHCHHBLIX r€OMETpHii: HAaCTWIOB M3 AT Ha
YPOBHE 3€MJIM M NIPAMOYTOJbHBLIX MOABaJIOB. [Ipennonaraercs 3ajeraHHe rPyHTOBHIX BOJ MOCTOAHHOH
TeMNepaTypLl Ha onpefesicHHOM riyGHHe EHXe YpoBHA 3eMiH. JUIA TaKMX reOMETPHH BNepBEIe Mpeac-
TaBJICHBH aHAJHTHYECKHE pelleHHd, YYHTHIBAIOLIME BIHAHHE KaK H3OJIAUMH, TaK H IPYHTOBBIX BOX Ha
NOTEPH TEIUIA TAKAMH 06BbEKTaMH.



